Latent Target Score Matching, with an application to
Simulation-Based Inference

Joohwan Ko Tomas Geffner
University of Massachusetts Amherst NVIDIA
joohwanko@cs.umass.edu tgeffner@nvidia.com
Abstract

Denoising score matching (DSM) for training diffusion models may suffer from
high variance at low noise levels. Target Score Matching (TSM) mitigates this
when clean data scores are available, providing a low-variance objective. In many
applications clean scores are inaccessible due to the presence of latent variables,
leaving only joint signals exposed. We propose Latent Target Score Matching
(LTSM), an extension of TSM to leverage joint scores for low-variance supervision
of the marginal score. While LTSM is effective at low noise levels, a mixture with
DSM ensures robustness across noise scales. Across simulation-based inference
tasks, LTSM consistently improves variance, score accuracy, and sample quality.

1 Introduction

Diffusion models trained with the denoising score matching (DSM) objective [29] have emerged as
a powerful class of generative models [[12} 26} 27, 25 16]. These models learn the score, the gradient
of the log-density of the diffused data distribution, to parameterize a generative process for sample
generation. While widely applicable [29] 26], the DSM objective may suffer from large variance
as the diffusion noise level approaches zero [7]], potentially degrading accuracy and sample quality.
Target Score Matching (TSM) [7] addresses this, providing a low-variance training target for low
noise levels in settings where clean data scores are accessible. Many problems of interest, however,
involve latent variables [4]. Often, we are interested in modeling a subset of variables while treating
the rest as nuisance or auxiliary components. Examples include coarse-graining in structural biology
[19, 1], backbone protein design [30} 32, [14} 8], or inference tasks where only a few parameters are
of interest [4]. In such cases, simulators or models may provide additional signals, such as joint
density values and scores, which are unused by DSM and TSM [4}, [11].

We propose Latent Target Score Matching (LTSM), a diffusion training objective tailored to models
with latent variables. LTSM extends TSM by showing that the marginal score of interest (over non-
latent variables) can be expressed as the conditional expectation of joint scores involving the latents.
This leads to low-variance regression targets in the low-noise regime, directly addressing the short-
comings of DSM. Furthermore, LTSM can be combined with DSM through a simple time-dependent
mixture, which balances accuracy near zero noise with robustness at larger noise levels. We evaluate
LTSM on several simulation-based inference [28]] tasks, where “gray-box” models expose joint infor-
mation over parameters, latents, and observations [4]. We observe that the mixture objective that com-
bines DSM and LTSM consistently improves over DSM in terms of score accuracy and sample quality.

2 Preliminaries

Diffusion (VP-SDE). Consider the variance preserving [27] stochastic differential equation (SDE)
d6; = —3B(t) 0, dt +/B(t) AWy, O ~ pdata(0), 2.1

Machine Learning and the Physical Sciences Workshop, NeurIPS 2025.

Gaussian Mixture of Categorical Generalized Galton Board Gaussian

,_.
5 o
2 R
\3

= e e
L R
- e
s 2
S 2
Score Estimation Error
o
o

Estimator Variance

oo —
100 — 100] —oo 100 * 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Time t Time t Time t Time t

—— DSM LTSM — MIX

Figure 1: [Left] Regression target variance vs. diffusion time ¢ for DSM and LTSM across three tasks (section.
DSM rises as t — 0, while LTSM stays low at small ¢, increasing for larger ¢. The time-dependent mixture
retains the best of both methods. [Right] Score estimation error, the DSM+LTSM mixture yields the best results.

for t € [0,1] and W, a standard Wiener process. Intuitively, this process gradually diffuses the data
distribution towards a standard Gaussian. Given 6y and 5(t) > 0, eq. (2.1) can be simulated exactly

as 0y ~ pi(0; | o) = MOy; a(t) 0o, (1 — a?(t)) I), where a(t) = exp(—3 fot B(s)ds).
Diffusion models can be used to sample pgata(6) by simulating the time-reversal of eq. (2.1)

do; = [—% (t)0: — B(t) Vg Ingt(et)] dt + /B(1) dV_Vt, 01 ~ N(0,1), (2.2)

from ¢ = 1 to t = 0. This requires the score V log p; (6;), which is typically intractable. Diffusion
models approximate it using a neural network, typically trained with the DSM loss [13} 29]

1
Losm(Y) = / Eg, 0,60 [/\(t) |s4(0e,t) = Ve, log pe(6: | 0o) Hz]dt- (2.3)
0 —_—

ypsm (0o,60¢,t) (regression target)

Since the DSM regression target ypsn (0o, 0, t) is an unbiased estimator of the true score, i.e.,
Vo, logpi(0;) = Egg g, [VO: log pe(6; | 0p)], minimizing the DSM loss trains sy, to approximate the
true score. For the VP-SDE, the regression target from eq. is given by Vg, logp(0; | 6p) =
(a(t)bo — 0,)/(1 — a(t)?), with a(t) = exp [=1/2 (Bmint + 5 (Bmax — Bmin)t?)] for a standard
linear schedule 3(t) = Bmin + (Bmax — Bmin)t- The main drawback of this estimator is its high
variance as ¢ — 0, a problem that motivated alternative estimators with better performance for small ¢.

Target Score Matching [7]. TSM is a method designed for settings where the score of the clean
data Vg, log p(6) is known. It follows the same core principle as DSM, training a network s, by
regressing against an unbiased estimator of the true score Vy, log p;(6;). The key innovation in TSM
is the introduction of a different unbiased estimator, designed to have low variance as ¢t — 0

1
Lrsu(®) = [a0, MOllsolOrt) = Vo logpen) [Flae @4
0 N———

yrsm (0o,t) (regression target)

3 Latent Target Score Matching

We consider a class of probabilistic models defined by a joint density p(6, z), where 6 represents
the variables of interest and z represents auxiliary variables, which may be latent or simply
nuisance components that we do not model directly. This structure is prevalent across domains,
such as structural biology (coarse-graining [19, [1l], backbone protein design [30, 132} [14]), and
simulation-based inference (SBI) [4]], among others. Our goal is to train a diffusion model to sample
the marginal p(#), assuming access to samples from p(6, z) and the ability to evaluate the joint
score Vg logp(6, z). While DSM can be applied, as it only requires samples of 6, it ignores the
information in the joint score and may suffer from high variance as ¢ — 0 [7]. TSM was designed to
address this issue, but is not applicable, as it requires the clean marginal score Vg, log p(6p), which
is often intractable for latent-variable models. This motivates our development of Latent Target
Score Matching (LTSM), a training objective that leverages the joint score to provide low-variance
supervision for the marginal score. LTSM extends TSM to the latent variable setting by showing
that the joint score can be used to build an unbiased estimator of the marginal score of interest:

Proposition 3.1 (Latent Target Score Identity). Under the VP-SDE that diffuses 6 (and not z), we have
1
a(t)

This identity provides a new unbiased estimator for the marginal score of interest learned by diffusion
models Vy, log p;(6;), which can be directly used to derive the LTSM training objective

Vo, logp:(0:) = Eg,,216, [V, log p(o, 2)]. 3.1

1
ﬁLTSMW)):/ Ep(9,2)p: 0 160) [N s0(0r, 1) = 555 Veo logp(0o. 2) [IP]dt, (3.2)
0

yrrsMm (0o,2,t) (regression target)

where we denote the LTSM regression target as yrrsm(fo, 2,t). As intended, the LTSM target
remains well-conditioned for small ¢, as shown in fig. [T However, fig.[T]also shows that its variance
increases for larger ¢, where DSM is often more stable. This complementary behavior, also noted in
the original TSM work [7]], motivates a new regression target obtained as an affine combination of
the DSM and LTSM targets. We define the mixture regression target as

ymix (0o, 2, 0, t;we) = weypsm(Po, O, t) + (1 — we)yrrsm(bo, 2, 1), (3.3)

where a time-dependent weight w; € R is used to mix both targets. Since yyrx is an unbiased
estimator of the true score for any w;, it can be used to obtain a new training objective

1
Lanx() = [[n0)]5000rt) ~ snae(60. 2.0t 00) | . (3.4)
0

Intuitively, choosing w; trades variance optimally across time. While its value can be chosen
heuristically, we show the w; that minimizes the variance of yn,ix can be computed analytically:

Proposition 3.2 (Optimal mixture weight). Define the mixture regression target ymrx as in eq. (3.3).
Then, for fixed t, the weight w; that minimizes the variance of yymix is

Wt = E[H?/LTSMHQ] - E[y]—l)—SM Yrrsm (3.5)

© Elllypsml?] + Elllyrrsm|?] — 2E[yden yrrsm]

where expectations are w.r.t. (0g, 0, z) ~ p(0o, 2)p(0: | 00). In practice, we learn w; = o(MLP(t))
Jjointly with the score network minimizing the loss from eq. (3.4), avoiding expectation estimates.

Proof. We have w} = argmin,, E[||yax(w;)||?]. Expanding yyx in terms of wy, ypsy and
yrrswu, differentiating w.r.t. wy, and setting the result to zero yields eq. (3.5).

4 Experiments

We evaluate DSM (eq. (2.3))), LTSM (eq. (3.2)), and the mixture approach (eq. (3.4)) on three
simulation-based inference (SBI) tasks. SBI is a powerful framework for inferring parameters 6 of
complex simulators whose likelihood function p(z|6) is intractable. Many such simulators are "gray-
box" models that rely on internal latent variables z to generate observations z, exposing a tractable
joint density p(0, z,2) = p(8) p(z |) p(x | 0, z). Given an observation z*, the goal remains to find
the posterior p(f | z*) (see appendix for a detailed background). Neural SBI methods—posterior
(NPE), likelihood (NLE), and diffusion-based approaches [22} 18} |5} 31}, [24} [17, 9]—train amortized
models on simulator-generated datasets {(6;, z;, z;) }}.,, which can be used for any x at inference
time. In practice, generating large datasets by calling the simulator is often expensive. This motivates
a focus on sample efficiency: achieving strong performance from a limited number of simulator calls.
While diffusion models trained with DSM have proven to be a powerful approach for SBI [9], we
study whether we can improve their sample efficiency by leveraging simulator’s joint information via
LTSM. We investigate this by training a score network s,,(6;, ¢, x) to approximate Vg, log p; (0;|x)
and comparing its performance when supervised by the DSM target, the LTSM target, or their mixture.

Simulators. We evaluate our approach on three simulators: a Gaussian model where scores can
be computed exactly, a Mixture of Categoricals, and a Generalized Galton Board [4]. We briefly
describe the models here, and provide full details in appendix

Gaussian

Avg over observations z=-0.5 z =-0.25 z=0.0 z=0.25 z=0.5
0.16 0.12 0.16 016 0.20 0.20
0.08 0.06 0.08 0.08 0.10 0.10
0.00 B 0.00 0.00 0.00

103 10% 103 101 103 101 103 101 103 101 103 101

Mixture of Categorical

z=3 z=4 =05 z=6
0.08
0.10 0-16 0.10 012
g 0.08
0.04
S0.05 0.08 0.05 0.06
0.04
0.00 0.00 0.00
10° 10* 103 10%
z=18
0.16
ﬂoos
0.00
103 10%

Avg over observations z=7
0.12
0.00 0.00
103 104 103 104 103 104 103 10%
Galton Board
Avg over observations z =12 z =16 z =20

0.00 0.00

103 10* 103 10* 103 10*

z =14
0.10 0.20 0.16 010 0.12
0.05 \/\0.10 0.08 0.05 \\0406
0.00 /\/’\
107 1ot

Simulator budget
—— DSM —e— MIX

Figure 2: MMD (lower is better) vs. simulator budget (i.e. size of the dataset used for training) for
each task (rows). Left column averages over five observations x; remaining columns show results for
different potential values for the observations x. The Mixture improves over DSM, with the largest
gap happening for the lower number of simulator calls.

Gaussian: § ~N(0,1); 2|0 ~N(0,1); z | z~N(z,1). By conjugacy 6 | z ~ N (z/3, 2/3) and,
diffusing only 6, 6, |z~ N (a(t) z/3, 1 — a(t)/3) with Vg, log p (6 | 2) = (a(t) 2/3 — 6;) /(1 —
a?(t)/3). These closed forms give exact error/variance curves.

Mixture of Categorical: p(f) = N(0,1); z | & ~ Bernoulli(o(0)) with o(u) = 1/(1 + e™%);
x|z~ Categorical(p(*)) over K classes, () = g, pM) = p; € AK-L,

Generalized Galton Board: p(0) = N(0,1); fori =1,..., R (rows), z; |0~ Bernoulli(c(8)) with
logistic o; define s; = 2z; — 1 and x = init_pos + Ef;l s; with init_pos = |num_nails/2|.

Evaluation Metrics and Setup. To compare methods, we measure three key diagnostics in order: (1)
the conditional variance of the regression target (yfsyn, YPrsn, Yimix) @s a function of the diffusion
time ¢; (2) the ¢; error between the learned score s, (0;,¢,) and the true score V log p;(0;|x)
achieved by the different losses for the Gaussian model, where the true score can be computed
analytically; and (3) the quality of the final posterior samples, assessed by the MMD [24}, [10} [11]]
with a Gaussian kernel (appendix [A.4). Unless stated otherwise, all methods share the same network
architecture, noise schedule, and training budgets to ensure a fair comparison.

Results. Our results show a consistent trade-off across all metrics. We begin the analysis with
the regression-target variance (fig. [T} left panel). As hypothesized, the DSM regression target’s
variance grows large as t — 0, whereas the LTSM target remains well-conditioned at low noise levels
and only grows for larger ¢t. The mixed regression target (with the optimal weight from eq. (3.3))
leverages the best of both worlds, combining their complementary strengths to maintain low variance
across all noise levels. We report both the optimal weights w; and the trained w; as functions of
t in appendix [A3] This fundamental difference in variance directly translates to score estimation
accuracy. On the Gaussian task, where the true score is known (fig.[I} right panel), the Mixture (MIX)
objective yields the approximation with the lowest overall error, by leveraging LTSM’s accuracy
at small ¢ and DSM’s robustness at larger ¢. Ultimately, these improvements in score estimation
yield higher-quality posterior samples, the main goal in SBI. As shown by the MMD results in fig. 2]
the MIX method consistently generates better posterior samples than DSM across all tasks, and for
several different potential observations x*. The performance gains are most significant for smaller
simulator budgets, demonstrating the improved sample efficiency of our approach.

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zugner, Marco Federici, Cecilia
Clementi, Frank Noé, Robert Pinsler, and Rianne van den Berg. Two for one: Diffusion models
and force fields for coarse-grained molecular dynamics. Journal of Chemical Theory and
Computation, 19(18):6151-6159, 2023.

Mark A Beaumont. Approximate bayesian computation. Annual review of statistics and its
application, 6(1):379-403, 2019.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859-877, 2017.

Johann Brehmer, Gilles Louppe, Juan Pavez, and Kyle Cranmer. Mining gold from implicit
models to improve likelihood-free inference. Proceedings of the National Academy of Sciences,
117(10):5242-5249, 2020.

Jeffrey Chan, Valerio Perrone, Jeffrey Spence, Paul Jenkins, Sara Mathieson, and Yun Song.
A likelihood-free inference framework for population genetic data using exchangeable neural
networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020.

Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score
matching. arXiv preprint arXiv:2402.08667, 2024.

Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim,
Mario Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, et al. Proteina: Scaling
flow-based protein structure generative models. arXiv preprint arXiv:2503.00710, 2025.

Tomas Geffner, George Papamakarios, and Andriy Mnih. Compositional score modeling
for simulation-based inference. In International Conference on Machine Learning, pages
11098-11116. PMLR, 2023.

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation
for likelihood-free inference. In International conference on machine learning, pages 2404—
2414. PMLR, 2019.

Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with amortized
approximate ratio estimators. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 4239-4248. PMLR, 13-18 Jul 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

Aapo Hyvirinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail,
Vincent Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illumi-
nating protein space with a programmable generative model. Nature, 623(7989):1070-1078,
2023.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An in-
troduction to variational methods for graphical models. Machine learning, 37(2):183-233,
1999.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. FElucidating the design space
of diffusion-based generative models. Advances in neural information processing systems,
35:26565-26577, 2022.

[17] Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H. Macke.
Likelihood-free inference with emulator networks. In Francisco Ruiz, Cheng Zhang, Dawen
Liang, and Thang Bui, editors, Proceedings of The 1st Symposium on Advances in Approximate
Bayesian Inference, volume 96 of Proceedings of Machine Learning Research, pages 32-53.
PMLR, 02 Dec 2019.

[18] Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Ocal, Marcel Nonnen-
macher, and Jakob H Macke. Flexible statistical inference for mechanistic models of neural
dynamics. Advances in neural information processing systems, 30, 2017.

[19] Siewert J Marrink, H Jelger Risselada, Serge Yefimov, D Peter Tieleman, and Alex H De Vries.
The martini force field: coarse grained model for biomolecular simulations. The journal of
physical chemistry B, 111(27):7812-7824, 2007.

[20] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087-1092, 1953.

[21] Radford M Neal. Probabilistic inference using markov chain monte carlo methods. 1993.

[22] George Papamakarios and Iain Murray. Fast e-free inference of simulation models with bayesian
conditional density estimation. Advances in neural information processing systems, 29, 2016.

[23] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1-64, 2021.

[24] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In The 22nd international conference on
artificial intelligence and statistics, pages 837-848. PMLR, 2019.

[25] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256-2265. pmlr, 2015.

[26] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[27] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[28] Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan,
Pedro J Gongalves, David S Greenberg, and Jakob H Macke. Sbi-a toolkit for simulation-based
inference. arXiv preprint arXiv:2007.09114, 2020.

[29] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661-1674, 2011.

[30] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089—1100, 2023.

[31] Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature,
466(7310):1102-1104, 2010.

[32] Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu,
and Ava P Amini. Protein structure generation via folding diffusion. Nature communications,
15(1):1059, 2024.

A Experiment Details

A.1 Simulation-based Inference

Simulation-Based Inference (SBI) [6, 2], also known as likelihood-free inference, is a class of
methods for performing Bayesian inference on models where the likelihood function is intractable.
In many scientific fields, mechanistic models are expressed as simulators parameterized by 6 that
generate observations x. This defines an implicit likelihood p(z|f) which can be sampled from
by running the simulator, but cannot be evaluated analytically. The goal of SBI is to estimate the
posterior distribution p(#|x) given a real-world observation.

The intractability of the likelihood prevents the use of traditional inference algorithms like Markov
Chain Monte Carlo [20l 21]] or Variational Inference [15} 3l], which require explicit likelihood
evaluations. Neural SBI methods [22} (18], 15, 31} 24} [17} |9] overcome this by training a surrogate
model (e.g., anormalizing flow [23]] or a diffusion model [27]) to approximate the posterior, likelihood,
or likelihood ratio, using a dataset of (6,) pairs generated by the simulator.

A crucial aspect of many simulators is their reliance on internal latent variables z to produce an
observation [4]. These "gray-box" simulators have a structure p(6, z,x) = p(0)p(z|0)p(z|0, z).
While the marginal likelihood p(xz|f) remains intractable (it would require marginalizing over the
latent variables z), the full joint likelihood p(z, €, z) is often tractable. This is the exact setting where
our proposed method, LTSM, is applicable.

A classic example is the Galton Board (see fig. [3):

* The parameters 6 define the configuration of the nails in each row.

* The latent variables z represent the stochastic path of a dropped ball, a sequence of binary
left/right bounces at each nail.

e The observation x is the final bin where the ball lands.

The inference task is: given that a ball landed in bin z, what is the posterior distribution p(0|x)?
The likelihood p(x|#) is computationally expensive, as it requires summing the probabilities of all
possible paths z that end in bin x. However, for any single, complete path z, the joint probability
p(z, z,0) can be computed. LTSM is designed to exploit this accessible joint information to learn the
posterior score of interest efficiently.

A.2 DSM and LTSM for Posterior Estimation

All identities carry over when conditioning on an observation z. We train a conditional score network
5y (04, t, x) and keep the forward kernel p; (6, | 6y) unchanged. The DSM target remains
ydsm (0o, 0:,t) = Vo, logp (6| 0o), with E[ypgnm | 0+, 2] = Vo, log p(6; | x).
LTSM becomes
yirsm (o, 2, t,2) == 575y Vo, logp(fo, 2 |) = 15 Ve, log p(bo, 2,),
and satisfies E[y{ray | 06, €] = Vi, log p (6, |). Hence the mixed target is

Ymix(t) = (1 —wt) Yimsm + Wt Ybsms
and the loss integrates expectations over (0g, z,z) ~ p(0, z,) and 6; ~ p;(- | 6p).

A.3 Simulator Details

All simulators follow the SBI factorization p(0, z, x) = p(8) p(z |) p(z | 2, 0). We diffuse only 0
under the VP-SDE and keep z, « fixed. For LTSM we use the joint-score target yrrsm (6o, 2, t) =
(1/a(t)) Vo, log p(Bo, z, x), where the joint gradient is obtained by forming the joint log-density and
backpropagating to 6, via autodiff.

Gaussian. 0 ~ N(0,1), z |0 ~N(0,1), x| z ~ N(z,1). Conjugacy gives 0 | z ~ N (x/3, 2/3).
Diffusing only 6 yields 0, | z ~ N (a(t) /3, 1 — a?(t)/3) and the closed-form posterior score
a(t)x/3 — 0,

v9t Ingt(et | ‘T) = 1— ag(t)/?) .

0.15 4 — pxI8a)
Pix]61) .
%0101 *« x~plxleg * °
= 0.05 .,——-_:—’7':' . |'
)
.,:F . . Tle
0.00 {eeveoe™ : . |. -_'Yosoogo
0 5 10 15 20 25 30

Figure 3: Toy Galton board depiction, extracted from Brehmer et al. [4]]. The blue and green dark
dots on the top figure represent potential paths of a ball dropped from the top. The positioning of the
“nails” is defined by the parameters 6, and the final position where the ball lands is denoted by x. For
different parameters 6 the distribution of positions for the ball’s landing changes.

These closed forms are used for exact score errors and label-variance. The (analytic) joint gradient
w.r.t. 0 is

Vologp(0,z,2) = -0+ (2 — 0).
Mixture of Categorical. p(f) = N(0,1); z | § ~ Bernoulli(o(#)) with o(u) = 1/(1 + e™%);
x| z ~ Categorical(¢(*)) over K classes. We instantiate ©(°) = ¢, and ¢(!) = ¢, once by
sampling logits and applying a softmax; these /-dimensional probability vectors are then held fixed.
Because z 1L 0| z,

logp(0, 2,) = log p(0) +logp(z | 0) +logp(x | z) = Vylogp(d,z,2) = —0+ (2 —0(0)).

For posterior references we use rejection sampling over simulator draws, retaining 6 when x matches
a target class.

Generalized Galton Board. p(f) = N(0,1); fori = 1,..., R (number of rows), z; | 6 ~
Bernoulli(o(6)) with logistic o. Define steps s; = 2z; — 1 € {—1,+1} and a deterministic readout

R
T = init_pos + Z Si, init_pos = Lnum_nails/QJ7
i=1
where num_nails is the number of bins/pegs across the board (so « € {0,...,num_nails — 1}).

Since x depends on z only, the joint gradient is

R
VO Ing(97 Z,{L') = -0 + Z (ZZ - 0—(6))7
i=1

computed via autodiff in practice. Posterior references p(6 | x*) are approximated by rejection
sampling over simulator draws that hit the target bin x*.

A4 Kernel and MMD Details
Kernel. All distributional comparisons are performed in f-space (6 € R%) using the Gaussian/RBF

kernel)
ko (u,v) = eXp(— Huzj’;uz)'

For each simulator and fixed observation x*, a single bandwidth ¢ is selected once by the median-
heuristic (median pairwise distance on a pilot set of reference posterior samples {6; ~ p(6 | z*)})
and then held fixed across methods and budgets.

Gaussian Mixture of Categorical Generalized Galton Board

2 1.00 2 1.00 2 1.00
$0.75 $0.75 $0.75
2 Z Z
= = <
o o [=]
% 0.50 3 0.50 % 0.50
= = =
3 @ @
£ 025 £ 025 £ 025
2. 2. 2
5'0.00 5'0.00 5'0.00
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Time t Time t Time t

Figure 4: Variance—optimal DSM weight w; vs. time ¢{. Computed via Proposition Here wy is
the coefficient on the DSM target in the mixture: w; =0 means pure LTSM, w; =1 means pure DSM.
As expected, w; is low near t~0 and increases toward 1 as t — 1.

Population MMD. Given distributions P and) on R?, the squared maximum mean discrepancy is
MMD%(Pa Q) = E$73;/NP]€(.I, .’,U,) + E%y/"’Qk(ya y/) - 2E3¢~P7 y"‘Qk(‘T7 y)7
which equals 0 iff P = @ for characteristic kernels such as the Gaussian.

Estimator. For a fixed z*, let {0}/, ~ p(# | 2*) (reference) and {6; }io1~ (0 | *) (model). We
use the standard unbiased U-statistic

., 1 1 B B 2 m n ~
MMD,, = ———— ko(05,00) + ———— > ko(6;,0;) — — ko(0::0;),
u m(m—l); ()Jrn(n—l)#zj, ©s:01) mn;; (0002

— —— 2
and report MMD = {/max{MMD,,, 0} . The same kernel (and o) is used for all methods and
training budgets within each task.

A.5 Mixture Weights: Optimal vs. Learned

Recall the mixture target

Ymix = (1 = we) ylrsm + we Ybsu, (A.1)
where w; € [0, 1] multiplies the DSM target (w;=0 = pure LTSM; w;=1 = pure DSM). proposition
gives the variance—optimal coefficient

E 21 — E[y,)
wi = [llyrrsml|?] [Ypsm YrTsm] (A2)

~ Elllypsml?] + El|lyrrsm 2] — 2E[yden virsm]’

with expectations over (6, 0;, z) ~ p(6o, z) p:(0: | Ho) at fixed ¢. In fig. 4| we compute w; by Monte
Carlo using large simulator-generated samples at each ¢ and clip to [0, 1].

Learned Weights Used In Experiments. For all results other than the variance diagnostic, the
mixture employs a learned schedule w;. We parameterize w; = MLP(¢) with a sigmoid output and
learn it end-to-end jointly with the score network by minimizing the standard mixture score-matching
loss from section [3] (no separate variance objective). As shown in fig.[5] the learned schedules closely
follow the analytic trend of wy.

B Proofs

B.1 Standing Setting and Assumptions

We diffuse only # € R% under the VP-SDE forward kernel
0y = a(t) Oy + o(t) e, er L (0o, 2), «aft) >0,

so that p(0: | 0o) = q:(6; — a(t)fy) for some smooth noise density ¢;. Let p;(6;) denote the
marginal of 8, when (g, z) ~ p(6o, 2).

Also, the following assumption holds for both propositions. (A1) p(6y,z) and ¢; are C* in their
arguments and integrable; (A2) differentiation may be interchanged with integration (dominated
convergence); (A3) the integration-by-parts (IBP) boundary term in 6 vanishes.

Mixture of Categorical Generalized Galton Board

Gaussian

1.00 1.00 1.00
$0.75 $0.75 £0.75
k] k=] °
E g &
3 0.50 e 0.50 = 0.50
—~ —~ —
&= = =

0.25 0.25 0.25

0.00 0.00 0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Time t Time t Time t

Figure 5: Learned DSM weight w; vs. time ¢. w, is the DSM coefficient in the mixture (0 = LTSM,
1 = DSM), trained jointly with the score network. It is low near ¢t ~ 0 and rises toward 1 as t — 1,

closely tracking w;.

B.2 Latent Target Score Identity

Proposition 3.1 (Latent Target Score Identity, LTSI). Under the VP-SDE that diffuses 6 and keeps z
fixed, the following identity holds:

1
Vo, log p(0¢) = mEoo,zwt [V, log p(6o, 2)]. (B.1)

Proof. By independence,
20 = [[(60,2961 60) oz = [[p(60,2) a0, ~ a00) sy .
where o = «(t) for brevity. Differentiating inside the integral (A2),

Vo,pt(0:) = / (6o, 2) Vo, q:(0: — aby) o dz.

By the chain rule with u = 6; — af,
Vo, qt(u) = Vugr(u) and Vp,qi(u) = (=) Vugi(u),
hence Vg, q:(6; — aby) = —(1/a) Vo, q:(0: — aby). Substitute to get

Vonn(0) = [[9(60.2) Va,0.(60 — abo) doy
Apply vector IBP in 6 (A3): for each fixed z, 6;,
/p(007 2) Vo, q: (0 — ably) do = |:p(007 2) q1(0y — a@o)} 5 /(Jt(gt —ably) Vo,p(0o, 2) dby,
and the boundary term [-]s5 = 0 by (A3). Therefore
Vetpt(et // Qt 9t - 0490) veop(907)d90 dz.
Multiply and divide by p;(6;) and also by p(fp, z) inside the integral:
Vo, log p:(60:) = () Vo, pi(0:)

// p(0o, 2) Qt 9t*0490) Vo,p(0o, 2) 6o d>
p(90>z)

=p(60,2[0+)

= — E[Vyg, logp(0o, 2) | 6] .

10

B.3 Latent Target Score Matching

Proposition B.1 (Latent Target Score Matching (LTSM)). Let yrrsm(6o,2,t)
a(t)~1Ve, log p(6o, z) and n(t) > 0. Define

1
Lirsm(Y) = / N E p00,2) e (0:100) | 156 (02 1) — yrrsm (0o, 2,) ||* | dt.
0

Then, for almost every t € (0,1], the unique L* minimizer is 83, (0¢,t) = Vg, log pi(6:).
Proof. Lety; := a(t) "1V, log p(6y, z) and write the objective as

1
Lors(®) = [0B Isw(Ort) = wlP] de, n(t) > .
0
Fix t and abbreviate s(-) := sy(-,t) and m(6;) := E[y; | 0;]. Use the elementary identity
15(6:) = yell® = [l5(8e) = m(B) 1> + [lye — m(0)I|* — 2(s(8e) — m(Be), g — m(Br)).

Taking conditional expectation given 6, kills the cross term because E[y; — m/(6;) | 6:] = 0. Hence
E[lls(0:) = wel*] = E[lIs(6) = m(0)[?] + E[llye —m(00)]%]-

The second term does not depend on s, and the first is minimized uniquely when s(6;) = m(6;)
(nonnegative with equality iff s(6;) = m(6;) almost surely). Therefore the pointwise minimizer at
time ¢ is

S*(gt,t) =]E[yt | Gt }
By the Latent Target Score Identity (LTSI),

1
Ely. | 6:] = % E[Vg, logp(0o, 2) | 0] = Vo, log pi(0:).

Since 7(t) > 0, integrating over ¢ preserves this minimizer for each ¢, which proves that s; (6s,t) =
Vo, log pt(6y). 0

11

	Introduction
	Preliminaries
	Latent Target Score Matching
	Experiments
	Experiment Details
	Simulation-based Inference
	DSM and LTSM for Posterior Estimation
	Simulator Details
	Kernel and MMD Details
	Mixture Weights: Optimal vs. Learned

	Proofs
	Standing Setting and Assumptions
	Latent Target Score Identity
	Latent Target Score Matching

